Lagrange interpolation formula
Let (x1,y1),(x2,y2),…,(xn,yn) be n points in the plane (xi≠xj for i≠j). Then there exists a unique polynomial p(x) of degree at most n-1 such that yi=p(xi) for i=1,…,n.
Such polynomial can be found using Lagrange’s interpolation formula:
p(x)=f(x)(x-x1)f′(x1)y1+f(x)(x-x2)f′(x2)y2+⋯+f(x)(x-xn)f′(xn)yn |
where f(x)=(x-x1)(x-x2)⋯(x-xn).
To see this, notice that the above formula is the same as
p(x) | =y1(x-x2)(x-x3)…(x-xn)(x1-x2)(x1-x3)…(x1-xn)+y2(x-x1)(x-x3)…(x-xn)(x2-x1)(x2-x3)…(x2-xn) | ||
+…+yn(x-x1)(x-x2)…(x-xn-1)(xn-x1)(xn-x2)…(xn-xn-1) |
and that for all xi, every numerator except one vanishes, and this numerator will be identical to the denominator, making the overall quotient equal to 1. Therefore, each p(xi) equals yi.
Title | Lagrange interpolation formula |
---|---|
Canonical name | LagrangeInterpolationFormula |
Date of creation | 2013-03-22 11:46:21 |
Last modified on | 2013-03-22 11:46:21 |
Owner | drini (3) |
Last modified by | drini (3) |
Numerical id | 16 |
Author | drini (3) |
Entry type | Theorem |
Classification | msc 65D05 |
Classification | msc 41A05 |
Synonym | Lagrange’s Interpolation formula |
Related topic | SimpsonsRule |
Related topic | LectureNotesOnPolynomialInterpolation |
Defines | Lagrange polynomial |