minimality property of Fourier coefficients


Let f be a Riemann integrablePlanetmathPlanetmath periodic real function with period 2π and n a positive integer.  Among all “trigonometric polynomials”

φ(x):=α02+j=1n(αjcosjx+βjsinjx),

the polynomialPlanetmathPlanetmath with the coefficients αj and βj being the Fourier coefficients

αj=aj:=1π-ππf(x)cosjxdx

and

βj=bj:=1π-ππf(x)sinjxdx

for the Fourier series of f produces the minimal value of the mean square deviation

12π-ππ[f(x)-φ(x)]2𝑑x.

Proof.  For any fixed number n, it’s a question of giving the least value to the definite integral

m:=12π-ππ[f(x)-α02-j=1n(αjcosjx+βjsinjx)]2𝑑x(0). (1)

Expanding m and integrating termwise yields

m= 12π-ππ(f(x))2𝑑x-α02π-ππf(x)𝑑x
-1πj=1nαj-ππf(x)cosjxdx-1πj=1nβj-ππf(x)sinjxdx+12πα024-ππ𝑑x
+12πj=1nαj2-ππcos2jxdx+12πj=1nβj2-ππsin2jxdx
+α02πj=1nαj-ππcosjxdx+α02πj=1nβj-ππsinjxdx+1πj=1nk=1nαjβk-ππcosjxsinkxdx
+1πj=1nkjαjαk-ππcosjxcoskxdx+1πj=1nkjβjβk-ππsinjxsinkxdx.

Here, we have the Fourier coefficients

1π-ππf(x)𝑑x=a0,1π-ππf(x)cosjxdx=aj,1π-ππf(x)sinjxdx=bj.

Furthermore,

-ππcos2jxdx=-ππsin2jxdx=π,-ππcosjxsinkxdx= 0

and

-ππcosjxcoskxdx=-ππsinjxsinkxdx= 0for kj.

Using all these we can write

m=12π-ππ(f(x))2𝑑x-α0a02-i=1n(αiai+βibi)+a024+12i=1n(αi2+βi2).

Adding and subtracting still the sum  a024+12i=1n(ai2+bi2)  yields finally the form

m=12π-ππ(f(x))2𝑑x-a024-12i=1n(ai2+bi2)+14(α0-a0)2+12i=1n[(αi-ai)2+(βi-bi)2].

The three first addends of this sum do not depend on the choice of the quantities αi and βi.  The other addends are non-negative, and their sum is minimal, equal 0, when

αi=ai,βi=bii.

Accordingly, the mean square deviation m, i.e. (1), is minimal when one uses the Fourier coefficients. Q.E.D.

References

  • 1 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele.  Kirjastus Valgus, Tallinn (1966).
Title minimality property of Fourier coefficients
Canonical name MinimalityPropertyOfFourierCoefficients
Date of creation 2013-03-22 18:22:00
Last modified on 2013-03-22 18:22:00
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 13
Author pahio (2872)
Entry type Theorem
Classification msc 42A16
Classification msc 42A10
Related topic CommonFourierSeries
Related topic UniquenessOfFourierExpansion