Mittag-Leffler function


The Mittag-Leffler functionDlmfMathworldPlanetmath Eαβ is a complex function which depends on two complex parametersMathworldPlanetmath α and β. It may be defined by the following series when the real part of α is strictly positive:

Eαβ(z)=k=0zkΓ(αk+β)

In this case, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire functionMathworldPlanetmath.

Title Mittag-Leffler function
Canonical name MittagLefflerFunction
Date of creation 2013-03-22 14:54:34
Last modified on 2013-03-22 14:54:34
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 5
Author rspuzio (6075)
Entry type Definition
Classification msc 33E12