module coalgebra
Let be a bialgebra.
A left -module coalgebra is a coalgebra which is a left -module
with action satisfying
| (1) |
for all and .
There is a dual notion of a -comodule algebra.
Example 1
Let be a bialgebra.
Then is itself a -module coalgebra for the left regular action
.
| Title | module coalgebra |
|---|---|
| Canonical name | ModuleCoalgebra |
| Date of creation | 2013-03-22 13:26:37 |
| Last modified on | 2013-03-22 13:26:37 |
| Owner | mhale (572) |
| Last modified by | mhale (572) |
| Numerical id | 9 |
| Author | mhale (572) |
| Entry type | Definition |
| Classification | msc 16W30 |
| Related topic | ComoduleAlgebra |
| Related topic | ModuleAlgebra |
| Related topic | ComoduleCoalgebra |