module coalgebra
Let be a bialgebra. A left -module coalgebra is a coalgebra which is a left -module with action satisfying
(1) |
for all and .
There is a dual notion of a -comodule algebra.
Example 1
Let be a bialgebra. Then is itself a -module coalgebra for the left regular action .
Title | module coalgebra |
---|---|
Canonical name | ModuleCoalgebra |
Date of creation | 2013-03-22 13:26:37 |
Last modified on | 2013-03-22 13:26:37 |
Owner | mhale (572) |
Last modified by | mhale (572) |
Numerical id | 9 |
Author | mhale (572) |
Entry type | Definition |
Classification | msc 16W30 |
Related topic | ComoduleAlgebra |
Related topic | ModuleAlgebra |
Related topic | ComoduleCoalgebra |