module homomorphism


Let R be a ring and M,N left modules over R. A function f:MN is said to be a left module homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (over R) if

  1. 1.

    f is additive: f(u+v)=f(u)+f(v), and

  2. 2.

    f preserves left scalar multiplication: f(rv)=rf(v), for any rR.

If M,N are right R-modules, then f:MN is a right module homomorphism provided that f is additive and preserves right scalar multiplication: f(vr)=f(v)r for any rR. If R is commutativePlanetmathPlanetmathPlanetmathPlanetmath, any left module homomorphism f is a right module homomorphism, and vice versa, and we simply call f a module homomorphismMathworldPlanetmath.Forexample,anygrouphomomorphismbetweenabeliangroupsisamodulehomomorphism(overZ)andviceversa,asanyabeliangroupisaZ-module(andviceversa).IfR,Sarerings,andM,Nare(R,S)-bimodules,thenafunctionf:M→Nisabimodule homomorphismiffisaleftR-modulehomomorphismfromleftR-moduleMtoleftR-moduleN,andarightS-modulehomomorphismfromrightS-moduleMtorightS-moduleN.Anygrouphomomorphismbetweentwoabeliangroupsisa(Z,Z)-bimodulehomomorphism.Also,anyleftR-modulehomomorphismisan(R,Z)-bimodulehomomorphism,andanyrightS-modulehomomorphismisa(Z,S)-bimodulehomomorphism.Theconversesarealsotrueinallthreecases.Titlemodule homomorphismCanonical nameModuleHomomorphismDate of creation2013-03-22 19:22:54Last modified on2013-03-22 19:22:54OwnerCWoo (3771)Last modified byCWoo (3771)Numerical id8AuthorCWoo (3771)Entry typeDefinitionClassificationmsc 16D20Classificationmsc 15-00Classificationmsc 13C10Classificationmsc 16D10Definesbimodule homomorphism