module homomorphism
Let R be a ring and M,N left modules over R. A function f:M→N is said to be a left module homomorphism (over R) if
-
1.
f is additive: f(u+v)=f(u)+f(v), and
-
2.
f preserves left scalar multiplication: f(rv)=rf(v), for any r∈R.
If M,N are right R-modules, then f:M→N is a right module homomorphism provided that f is additive and preserves right scalar multiplication: f(vr)=f(v)r for any r∈R. If R is commutative, any left module homomorphism f is a right module homomorphism, and vice versa, and we simply call f a module homomorphism
.Forexample,anygrouphomomorphismbetweenabeliangroupsisamodulehomomorphism(overZ)andviceversa,asanyabeliangroupisaZ-module(andviceversa).IfR,Sarerings,andM,Nare(R,S)-bimodules,thenafunctionf:M→NisaUnknown node type: emiffisaleftR-modulehomomorphismfromleftR-moduleMtoleftR-moduleN,andarightS-modulehomomorphismfromrightS-moduleMtorightS-moduleN.Anygrouphomomorphismbetweentwoabeliangroupsisa(Z,Z)-bimodulehomomorphism.Also,anyleftR-modulehomomorphismisan(R,Z)-bimodulehomomorphism,andanyrightS-modulehomomorphismisa(Z,S)-bimodulehomomorphism.Theconversesarealsotrueinallthreecases.Titlemodule homomorphismCanonical nameModuleHomomorphismDate of creation2013-03-22 19:22:54Last modified on2013-03-22 19:22:54OwnerCWoo (3771)Last modified byCWoo (3771)Numerical id8AuthorCWoo (3771)Entry typeDefinitionClassificationmsc 16D20Classificationmsc 15-00Classificationmsc 13C10Classificationmsc 16D10Definesbimodule homomorphism