## You are here

Homemonic

## Primary tabs

# monic

A *monic polynomial* is a polynomial with a leading coefficient of 1. That is, if $P_{n}(x)$ is a polynomial of degree $n$ in the variable $x$, then the coefficient of $x^{n}$ in $P_{n}(x)$ is 1.

For example, $x^{5}+3x^{3}-10x^{2}+1$ is a monic 5th-degree polynomial. $3x^{2}+2z-5$ is a 2nd-degree polynomial which is not monic.

Related:

EisensteinCriterion, IrreduciblePolynomial2, AlgebraicInteger

Synonym:

monic polynomial

Type of Math Object:

Definition

Major Section:

Reference

## Mathematics Subject Classification

12E10*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

Jul 5

new correction: Error in proof of Proposition 2 by alex2907

Jun 24

new question: A good question by Ron Castillo

Jun 23

new question: A trascendental number. by Ron Castillo

Jun 19

new question: Banach lattice valued Bochner integrals by math ias

new correction: Error in proof of Proposition 2 by alex2907

Jun 24

new question: A good question by Ron Castillo

Jun 23

new question: A trascendental number. by Ron Castillo

Jun 19

new question: Banach lattice valued Bochner integrals by math ias