Nagell-Lutz theorem
The following theorem, proved independently by E. Lutz and T. Nagell, gives a very efficient method to compute the torsion subgroup of an elliptic curve defined over .
Theorem 1 (Nagell-Lutz Theorem).
Let be an elliptic curve with Weierstrass equation:
Then for all non-zero torsion points we have:
-
1.
The coordinates of are in , i.e.
-
2.
If is of order greater than , then
-
3.
If is of order then
References
- 1 E. Lutz, Sur l’equation dans les corps p-adic, J. Reine Angew. Math. 177 (1937), 431-466.
- 2 T. Nagell, Solution de quelque problemes dans la theorie arithmetique des cubiques planes du premier genre, Wid. Akad. Skrifter Oslo I, 1935, Nr. 1.
- 3 James Milne, Elliptic Curves, http://www.jmilne.org/math/CourseNotes/math679.htmlonline course notes.
- 4 Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.
Title | Nagell-Lutz theorem |
Canonical name | NagellLutzTheorem |
Date of creation | 2013-03-22 13:52:02 |
Last modified on | 2013-03-22 13:52:02 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 4 |
Author | alozano (2414) |
Entry type | Theorem |
Classification | msc 14H52 |
Related topic | EllipticCurve |
Related topic | MordellWeilTheorem |
Related topic | RankOfAnEllipticCurve |
Related topic | TorsionSubgroupOfAnEllipticCurveInjectsInTheReductionOfTheCurve |
Related topic | ArithmeticOfEllipticCurves |
Defines | Nagell-Lutz theorem |