ordered integral domain with well-ordered positive elements


Theorem.

If  (R,)  is an ordered (http://planetmath.org/OrderedRing) integral domainMathworldPlanetmath and if the set  R+={rR:  0<r}  of its positive elementsPlanetmathPlanetmath (http://planetmath.org/PositivityInOrderedRing) is well-ordered, then R and R+ can be expressed as sets of multiples of the unity as follows:

  • R={m1:m},

  • R+={n1:n+}.

The theorem may be interpreted so that such an integral domain is isomorphicPlanetmathPlanetmathPlanetmath with the ordered ring of rational integers.

Title ordered integral domain with well-ordered positive elements
Canonical name OrderedIntegralDomainWithWellorderedPositiveElements
Date of creation 2013-03-22 14:46:43
Last modified on 2013-03-22 14:46:43
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 11
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 06F25
Classification msc 12J15
Classification msc 13J25
Related topic TotalOrder
Related topic OrderedRing
Defines positive element