Ornstein-Weiss lemma
Let be a group. For a fixed , define the -boundary of as
(1) |
Let be the set of finite subsets of . Call a Følner net for a net being a directed set, such that for every finite ,
(2) |
where the limit is taken in the sense of directed sets. Recall that has a Følner net if and only if is amenable.
Theorem 1 (Ornstein-Weiss lemma)
Let be an amenable group and a subadditive, right-invariant function, that is:
-
1.
For any two finite subsets of ,
(3) -
2.
For any and finite ,
(4)
Then for any Følner net on , the limit
(5) |
exists, and does not depend on the choice of .
The Ornstein-Weiss lemma allows to prove variants of Birkhoff’s ergodic theorem for actions of amenable groups, rather than only those generated by an invertible, measure invariant map. Moreover, it shares several similarities with Fekete’s lemma on subadditive functions over the positive integers, although it is not a complete counterpart. In fact, putting determines a Følner sequence on ; however, if is subadditive, then is right-invariant, but not necessarily subadditive. (Counterexample: , , .)
References
- 1 Gromov, M. (1999) Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom. 2, 323–415.
- 2 Krieger, F. (2007) Le lemme d’Ornstein-Weiss d’après Gromov. In B. Hasselblatt (ed.), Dynamics, Ergodic Theory, and Geometry. Cambridge University Press.
- 3 Krieger, F. The Ornstein-Weiss lemma for discrete amenable groups. Preprint.
- 4 Ornstein, D.S. and Weiss, B. (1987) Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141.
Title | Ornstein-Weiss lemma |
---|---|
Canonical name | OrnsteinWeissLemma |
Date of creation | 2013-03-22 19:20:24 |
Last modified on | 2013-03-22 19:20:24 |
Owner | Ziosilvio (18733) |
Last modified by | Ziosilvio (18733) |
Numerical id | 5 |
Author | Ziosilvio (18733) |
Entry type | Theorem |
Classification | msc 43A07 |