place as extension of homomorphism


Theorem.

If f is a ring homomorphismMathworldPlanetmath from a subring 𝔬 of a field k to an algebraically closed field F such that  f(1)=1,  then there exists a place (http://planetmath.org/PlaceOfField)

φ:kF{}

of the field k such that

φ|𝔬=f.

Note.  That F should be algebraically closedMathworldPlanetmath, does not , since every field is extendable to such one.

References

  • 1 Emil Artin: .  Lecture notes.  Mathematisches Institut, Göttingen (1959).
Title place as extension of homomorphism
Canonical name PlaceAsExtensionOfHomomorphism
Date of creation 2013-03-22 14:57:21
Last modified on 2013-03-22 14:57:21
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 9
Author pahio (2872)
Entry type Theorem
Classification msc 13A18
Classification msc 12E99
Classification msc 13F30
Synonym extension theorem
Related topic RamificationOfArchimedeanPlaces