proof of double angle identity


Sine:

sin(2a) = sin(a+a)
= sin(a)cos(a)+cos(a)sin(a)
= 2sin(a)cos(a).

Cosine:

cos(2a) = cos(a+a)
= cos(a)cos(a)+sin(a)sin(a)
= cos2(a)-sin2(a).

By using the identity

sin2(a)+cos2(a)=1

we can change the expression above into the alternate forms

cos(2a)=2cos2(a)-1=1-2sin2(a).

Tangent:

tan(2a) = tan(a+a)
= tan(a)+tan(a)1-tan(a)tan(a)
= 2tan(a)1-tan2(a).
Title proof of double angle identity
Canonical name ProofOfDoubleAngleIdentity
Date of creation 2013-03-22 12:50:30
Last modified on 2013-03-22 12:50:30
Owner drini (3)
Last modified by drini (3)
Numerical id 4
Author drini (3)
Entry type Proof
Classification msc 51-00