proof of Euler four-square identity


Using Lagrange’s identityPlanetmathPlanetmath, we have

(k=14xkyk)2 =(k=14xk2)(k=14yk2)-1k<i4(xkyi-xiyk)2. (1)

We group the six squares into 3 groups of two squares and rewrite:

(x1y2-x2y1)2+(x3y4-x4y3)2 (2)
= ((x1y2-x2y1)+(x3y4-x4y3))2-2((x1y2-x2y1)(x3y4-x4y3)) (3)
(x1y3-x3y1)2+(x2y4-x4y2)2
= ((x1y3-x3y1)-(x2y4-x4y2))2+2(x1y3-x3y1)(x2y4-x4y2) (4)
(x1y4-x4y1)2+(x2y3-x3y2)2
= ((x1y4-x4y1)+(x2y3-x3y2))2-2(x1y4-x4y1)(x2y3-x3y2). (5)

Using

-2((x1y2-x2y1)(x3y4-x4y3)) +2(x1y3-x3y1)(x2y4-x4y2) (6)
-2(x1y4-x4y1)(x2y3-x3y2) =0

we get

1k<i4(xkyi-xiyk)2 =((x1y2-x2y1) +(x3y4-x4y3))2 (7)
+((x1y3-x3y1)-(x2y4-x4y2))2 (8)
+((x1y4-x4y1)+(x2y3-x3y2))2

by adding equations 2-4. We put the result of equation 7 into 1 and get

(k=14xkyk)2 (9)
=(k=14xk2)(k=14yk2) -((x1y2-x2y1+x3y4-x4y3)2
-(x1y3-x3y1+x4y2-x2y4)2 -(x1y4-x4y1+x2y3-x3y2)2

which is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to the claimed identity.

Title proof of Euler four-square identity
Canonical name ProofOfEulerFoursquareIdentity
Date of creation 2013-03-22 13:18:10
Last modified on 2013-03-22 13:18:10
Owner Thomas Heye (1234)
Last modified by Thomas Heye (1234)
Numerical id 7
Author Thomas Heye (1234)
Entry type Proof
Classification msc 13A99