proof of Hadwiger-Finsler inequality


From the cosines law we get:

a2=b2+c2-2bccosα,

α being the angle between b and c. This can be transformed into:

a2=(b-c)2+2bc(1-cosα).

Since A=12bcsinα we have:

a2=(b-c)2+4A1-cosαsinα.

Now remember that

1-cosα=2sin2α2

and

sinα=2sinα2cosα2.

Using this we get:

a2=(b-c)2+4Atanα2.

Doing this for all sides of the triangle and adding up we get:

a2+b2+c2=(a-b)2+(b-c)2+(c-a)2+4A(tanα2+tanβ2+tanγ2).

β and γ being the other angles of the triangle. Now since the halves of the triangle’s angles are less than π2 the function tan is convex we have:

tanα2+tanβ2+tanγ23tanα+β+γ6=3tanπ6=3.

Using this we get:

a2+b2+c2(a-b)2+(b-c)2+(c-a)2+4A3.

This is the Hadwiger-Finsler inequality.

Title proof of Hadwiger-Finsler inequality
Canonical name ProofOfHadwigerFinslerInequality
Date of creation 2013-03-22 12:45:21
Last modified on 2013-03-22 12:45:21
Owner mathwizard (128)
Last modified by mathwizard (128)
Numerical id 5
Author mathwizard (128)
Entry type Proof
Classification msc 51M16