proof of Hilbert space is uniformly convex space


We prove that in fact an inner product spaceMathworldPlanetmath is uniformly convex. Let ϵ>0, u,vH such that u1, v1, u-vϵ. Put δ=1-124-ϵ2. Then δ>0 and by the parallelogram lawMathworldPlanetmathPlanetmath

u+v2 = u+v2+u-v2-u-v2
= 2u2+2v2-u-v2
4-ϵ2
= 4(1-δ)2.

Hence, u+v21-δ.

Since a Hilbert spaceMathworldPlanetmath is an inner product space, a Hilbert space the conditions of a uniformly convex space.

Title proof of Hilbert space is uniformly convex space
Canonical name ProofOfHilbertSpaceIsUniformlyConvexSpace
Date of creation 2013-03-22 15:20:48
Last modified on 2013-03-22 15:20:48
Owner Mathprof (13753)
Last modified by Mathprof (13753)
Numerical id 16
Author Mathprof (13753)
Entry type Proof
Classification msc 46C15
Classification msc 46H05