proof of inverse of matrix with small-rank adjustment


We will first prove the formula when A=I.

Suppose that R-1+YTX is invertiblePlanetmathPlanetmath. Thus

(R-1+YTX)(R-1+YTX)-1=I.

and

R-1(R-1+YTX)-1+YTX(R-1+YTX)-1=I.

Multiply by XR from the left, and multiply by YT from the right, we get

X(R-1+YTX)-1YT+XRYTX(R-1+YTX)-1YT=XRYT.

The right hand side is equal to B-I, while the left hand side can be factorized as

(I+XRYT)X(R-1+YTX)-1YT.

So,

B(X(R-1+YTX)-1YT)=B-I.

After rearranging, we obtain

I=B(I-X(R-1+YTX)-1YT).

Therefore

(I+XRYT)-1=I-X(R-1+YTX)-1YT (*)

For the general case B=A+XRYT, consider

BA-1=I+XRYTA-1.

We can apply (*) with YT replaced by YTA-1.

Title proof of inverse of matrix with small-rank adjustment
Canonical name ProofOfInverseOfMatrixWithSmallrankAdjustment
Date of creation 2013-03-22 15:46:08
Last modified on 2013-03-22 15:46:08
Owner kshum (5987)
Last modified by kshum (5987)
Numerical id 4
Author kshum (5987)
Entry type Proof
Classification msc 15A09