proof of Prohorov inequality


Starting from the basic inequality exp(-x)1-x, it’s easy to derive by elementary algebraic manipulations the two inequalities

exp(x)-x-1 2(cosh(x)-1)
2(cosh(x)-1) xsinh(x)

By the Chernoff-Cramèr bound (http://planetmath.org/ChernoffCramerBound), we have:

Pr{i=1n(Xi-E[Xi])>ε}exp[-supt>0(tε-ψ(t))]

where

ψ(t)=i=1n(lnE[etXi]-tE[Xi])

Keeping in mind that the condition

Pr{|Xi|M}=1 i

implies that, for all i,

E[|Xi|k]Mk k0

(see here (http://planetmath.org/RelationBetweenAlmostSurelyAbsolutelyBoundedRandomVariablesAndTheirAbsoluteMoments) for a proof) and since lnxx-1 x>0, and

E[|X|k]Mk  E[|X|k]E[X2]Mk-2 k2,kN

(see here (http://planetmath.org/AbsoluteMomentsBoundingNecessaryAndSufficientCondition) for a proof), one has:

ψ(t) = i=1n(lnE[etXi]-tE[Xi])
i=1nE[etXi]-tE[Xi]-1
= i=1nE[etXi-tXi-1]
i=1n2E[cosh(tXi)-1]
i=1nE[tXisinh(tXi)]
i=1nE[|tXisinh(tXi)|]
= i=1ntE[|Xi|sinh(t|Xi|)]
= i=1ntE[k=0t2k+1|Xi|2k+2(2k+1)!]
= i=1ntk=0t2k+1E[|Xi|2k+2](2k+1)!
i=1ntk=0t2k+1E[Xi2]M2k(2k+1)!
= tMk=0t2k+1M2k+1i=1nE[Xi2](2k+1)!
= tv2Mk=0(tM)2k+1(2k+1)!
= tv2Msinh(tM).

One can now write

supt>0(tε-ψ(t))supt>0(tε-tv2Msinh(tM))=supt>0[v2M2(M2εv2t-tMsinh(tM))]

Optimizing this expression with respect to t would lead to solving the transcendental equation:

Mεv2=Mtoptcosh(Mtopt)+sinh(Mtopt)

which is analytically infeasible. So, one can choose the sup-optimal yet manageable solution

t~=1Marsinh(Mε2v2)

which, once plugged into the bound, yields

Pr{i=1n(Xi-E[Xi])>ε}exp[-v2M2(Mε2v2arsinh(Mε2v2))]
Title proof of Prohorov inequality
Canonical name ProofOfProhorovInequality
Date of creation 2013-03-22 16:12:58
Last modified on 2013-03-22 16:12:58
Owner Andrea Ambrosio (7332)
Last modified by Andrea Ambrosio (7332)
Numerical id 14
Author Andrea Ambrosio (7332)
Entry type Proof
Classification msc 60E15