To prove that
|
a-ba+b=tan(A-B2)tan(A+B2) |
|
we start with the sines law, which says that
This implies that
We can write sin(A) as
|
sin(A)=sin(A+B2)cos(A-B2)+cos(A+B2)sin(A-B2). |
|
and sin(B) as
|
sin(B)=sin(A+B2)cos(A-B2)-cos(A+B2)sin(A-B2). |
|
Therefore, we have
|
a(sin(A+B2)cos(A-B2)-cos(A+B2)sin(A-B2))=b(sin(A+B2)cos(A-B2)+cos(A+B2)sin(A-B2)) |
|
Dividing both sides by cos(A-B2)cos(A+B2), we have,
|
a(tan(A+B2)-tan(A-B2))=b(tan(A+B2)+tan(A-B2)) |
|
This gives us
|
ab=tan(A+B2)+tan(A-B2)tan(A+B2)-tan(A-B2) |
|
Hence we find that
|
a-ba+b=ab-1ab+1=tan(A-B2)tan(A+B2). |
|