properties of Poisson random variables
Proposition 1.
If are independent Poisson random variables with parameters , then is a Poisson random variable with parameter .
Proof.
Let and , let us calculate the distribution function![]()
of :
As a result, is a Poisson random variable with parameter . Notice that in the fifth equation, we used the assumption that and are independent. ∎
As a corollary, any sum of independent Poisson random variables is Poisson, with parameter the sum of the parameters from the independent random variables![]()
.
Proposition 2.
A Poisson random variable is infinitely divisible.
Proof.
Let be a Poisson random variable with parameter . Let be any positive integer. Let be independent identically distributed Poisson random variables with parameter . Then the sum of these random variables is easily seen to be Poisson, with parameter , and is therefore identically distributed as . ∎
| Title | properties of Poisson random variables |
|---|---|
| Canonical name | PropertiesOfPoissonRandomVariables |
| Date of creation | 2013-03-22 18:50:55 |
| Last modified on | 2013-03-22 18:50:55 |
| Owner | CWoo (3771) |
| Last modified by | CWoo (3771) |
| Numerical id | 4 |
| Author | CWoo (3771) |
| Entry type | Derivation |
| Classification | msc 62E15 |