Processing math: 21%

second integral mean-value theorem


If the real functions f and g are continuousMathworldPlanetmath and f monotonic on the interval ā€‰[a,b],ā€‰ then the equation

āˆ«baf(x)g(x)š‘‘x=f(a)āˆ«Ī¾ag(x)š‘‘x+f(b)āˆ«bĪ¾g(x)š‘‘x (1)

is true for a value Ī¾ in this interval.

Proof.ā€‰ We can suppose thatā€‰ f(a)ā‰ f(b)ā€‰ since otherwise any value of Ī¾ between a and b would do.

Letā€™s first prove the auxiliary result, that if a function Ļ† is continuous on an open interval I containingā€‰ [a,b]ā€‰ then

lim (2)

In fact, when we take an antiderivative Ī¦ of Ļ†, then for every nonzero h the function

xā†¦Ī¦ā¢(x+h)-Ī¦ā¢(x)h

is an antiderivative of the integrand of (2) on the intervalā€‰ [a,b].ā€‰ Thus we have

āˆ«abĻ†ā¢(x+h)-Ļ†ā¢(x)hā¢š‘‘x=Ī¦ā¢(b+h)-Ī¦ā¢(x)h-Ī¦ā¢(a+h)-Ī¦ā¢(x)hā†’Ļ†ā¢(b)-Ļ†ā¢(a)ā€ƒasā¢hā†’ā€‰0.

The given functions f and g can be extended on an open interval I containingā€‰ [a,b]ā€‰ such that they remain continuous and f monotonic.ā€‰ We take an antiderivative G of g and a nonzero number h having small absolute valueMathworldPlanetmathPlanetmath.ā€‰ Then we can write the identity

āˆ«abfā¢(x+h)ā¢Gā¢(x+h)-fā¢(x)ā¢Gā¢(x)hā¢š‘‘x=āˆ«abfā¢(x+h)ā¢[Gā¢(x+h)-Gā¢(x)]hā¢š‘‘x-āˆ«abfā¢(x+h)-fā¢(x)hā¢Gā¢(x)ā¢š‘‘x. (3)

By (2), the left hand side of (3) may be written

āˆ«abfā¢(x+h)ā¢Gā¢(x+h)-fā¢(x)ā¢Gā¢(x)hā¢š‘‘x=fā¢(b)ā¢Gā¢(b)-fā¢(a)ā¢Gā¢(a)+Īµ1ā¢(h) (4)

whereā€‰ Īµ1ā¢(h)ā†’0ā€‰ asā€‰ hā†’0.ā€‰ Further, the function

xā†¦{fā¢(x+h)ā¢[Gā¢(x+h)-Gā¢(x)]hā€ƒforā€ƒhā‰ ā€„0fā¢(x)ā¢gā¢(x)ā€ƒā€ƒforā€ƒā€ƒh=ā€„0

is continuous in a rectangle ā€„aā‰¤xā‰¤b,-Ī“ā‰¤hā‰¤Ī“,ā€‰ whence we have

āˆ«abfā¢(x+h)ā¢[Gā¢(x+h)-Gā¢(x)]hā¢š‘‘x=āˆ«abfā¢(x)ā¢gā¢(x)ā¢š‘‘x+Īµ2ā¢(h) (5)

whereā€‰ Īµ2ā¢(h)ā†’0ā€‰ asā€‰ hā†’0.ā€‰ Because of the monotonicity of f, the expression fā¢(x+h)-fā¢(x)h does not change its sign whenā€‰ aā‰¤xā‰¤b.ā€‰ Then the usual integral mean value theorem guarantees for every h (sufficiently near 0) a number Ī¾h of the intervalā€‰ [a,b]ā€‰ such that

āˆ«abfā¢(x+h)-fā¢(x)hā¢Gā¢(x)ā¢š‘‘x=Gā¢(Ī¾h)ā¢āˆ«abfā¢(x+h)-fā¢(x)hā¢š‘‘x,

and the auxiliary result (2) allows to write this as

āˆ«abfā¢(x+h)-fā¢(x)hā¢Gā¢(x)ā¢š‘‘x=Gā¢(Ī¾h)ā¢[fā¢(b)-fā¢(a)+Īµ3ā¢(h)] (6)

withā€‰ Īµ3ā¢(h)ā†’0ā€‰ asā€‰ hā†’0.ā€‰ Now the equations (4), (5) and (6) imply

fā¢(b)ā¢Gā¢(b)-fā¢(a)ā¢Gā¢(a)+Īµ1ā¢(h)=āˆ«abfā¢(x)ā¢gā¢(x)ā¢š‘‘x+Īµ2ā¢(h)+Gā¢(Ī¾h)ā¢[fā¢(b)-fā¢(a)+Īµ3ā¢(h)]. (7)

Becauseā€‰ fā¢(b)-fā¢(a)ā‰ 0,ā€‰ the expression Gā¢(Ī¾h) has a limit L forā€‰ hā†’0.ā€‰ By the continuity of G there must be a number Ī¾ between a and b such thatā€‰ Gā¢(Ī¾)=L.ā€‰ Letting then h tend to 0 we thus get the limiting equation

fā¢(b)ā¢Gā¢(b)-fā¢(a)ā¢Gā¢(a)=āˆ«abfā¢(x)ā¢gā¢(x)ā¢š‘‘x+Gā¢(Ī¾)ā¢[fā¢(b)-fā¢(a)],

which finally gives

āˆ«abfā¢(x)ā¢gā¢(x)ā¢š‘‘x=fā¢(a)ā¢[Gā¢(Ī¾)-Gā¢(a)]+fā¢(b)ā¢[Gā¢(b)-Gā¢(Ī¾)]=fā¢(a)ā¢āˆ«aĪ¾gā¢(x)ā¢š‘‘x+fā¢(b)ā¢āˆ«Ī¾bgā¢(x)ā¢š‘‘x

Q.E.D.

Title second integral mean-value theorem
Canonical name SecondIntegralMeanvalueTheorem
Date of creation 2013-03-22 18:20:21
Last modified on 2013-03-22 18:20:21
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 12
Author pahio (2872)
Entry type Theorem
Classification msc 26A48
Classification msc 26A42
Classification msc 26A06