Siegel-Klingen Theorem
Theorem (Siegel-Klingen Theorem, [1],[2]).
Let K be a totally real number field and let ζ(s,K) be the Dedekind zeta function of K. If n≥1 is an integer then ζ(-n,K) is a rational number (i.e. ζ(-n,K)∈Q).
References
- 1 Klingen, Helmut, Über die Werte der Dedekindschen Zetafunktion. (German) Math. Ann. 145 1961/1962 265–272.
- 2 Siegel, Carl Ludwig, Über die analytische Theorie der quadratischen Formen. III. (German) Ann. of Math. (2) 38 (1937), no. 1, 212–291.
Title | Siegel-Klingen Theorem |
---|---|
Canonical name | SiegelKlingenTheorem |
Date of creation | 2013-03-22 16:01:19 |
Last modified on | 2013-03-22 16:01:19 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 4 |
Author | alozano (2414) |
Entry type | Theorem |
Classification | msc 11M06 |
Classification | msc 11R42 |