Siegel-Klingen Theorem


Theorem (Siegel-Klingen Theorem, [1],[2]).

Let K be a totally real number field and let ζ(s,K) be the Dedekind zeta function of K. If n1 is an integer then ζ(-n,K) is a rational numberPlanetmathPlanetmathPlanetmath (i.e. ζ(-n,K)Q).

References

  • 1 Klingen, Helmut, Über die Werte der Dedekindschen Zetafunktion. (German) Math. Ann. 145 1961/1962 265–272.
  • 2 Siegel, Carl Ludwig, Über die analytische Theorie der quadratischen Formen. III. (German) Ann. of Math. (2) 38 (1937), no. 1, 212–291.
Title Siegel-Klingen Theorem
Canonical name SiegelKlingenTheorem
Date of creation 2013-03-22 16:01:19
Last modified on 2013-03-22 16:01:19
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 4
Author alozano (2414)
Entry type Theorem
Classification msc 11M06
Classification msc 11R42