simultaneous upper triangular block-diagonalization of commuting matrices


Let 𝐞i denote the (column) vector whose ith position is 1 and where all other positions are 0. Denote by [n] the set {1,…,n}. Denote by Mn⁒(𝒦) the set of all nΓ—n matrices over 𝒦, and by GLn⁒(𝒦) the set of all invertible elements of Mn⁒(𝒦).

Theorem 1.

Let K be a field, let A1,…,Ar∈Mn⁒(K) be pairwise commuting matricesMathworldPlanetmath, and let L be a field extension of K in which the characteristic polynomialsMathworldPlanetmathPlanetmath of all Ak split. Then there exists an equivalence relationMathworldPlanetmath ∼ on [n] and a matrix R∈GLn⁒(L) such that:

  1. 1.

    If i∼j and i⩽k⩽j then k∼i.

  2. 2.

    If i∼j then 𝐞iT⁒R-1⁒Ak⁒R⁒𝐞i=𝐞jT⁒R-1⁒Ak⁒R⁒𝐞j.

  3. 3.

    If 𝐞iT⁒R-1⁒Ak⁒R⁒𝐞jβ‰ 0 then iβ©½j and i∼j.

In other words there exists a simultaneous upper triangular block-diagonalisation of the matrices A1,…,Ar in which each block is characterised by the particular values of the diagonal elements.

The proof of this theorem is the obvious combinationMathworldPlanetmathPlanetmath of the following two lemmas.

Lemma 2.

Let K be a field, let A1,…,Ar∈Mn⁒(K) be pairwise commuting matrices, and let L be a field extension of K in which the characteristic polynomials of all Ak split. Then there exists some P∈GLn⁒(L) such that

  1. 1.

    P-1⁒Ak⁒P is upper triangular for all k=1,…,r, and

  2. 2.

    if i,j,l∈[n] are such that iβ©½lβ©½j and 𝐞iT⁒P-1⁒Ak⁒P⁒𝐞i=𝐞jT⁒P-1⁒Ak⁒P⁒𝐞j for all k=1,…,r, then 𝐞lT⁒P-1⁒Ak⁒P⁒𝐞l=𝐞jT⁒P-1⁒Ak⁒P⁒𝐞j for all k=1,…,r as well.

Let Bk=P-1⁒Ak⁒P for all k=1,…,r and define

i∼j if and only ifβ€ƒπžiT⁒P-1⁒Ak⁒P⁒𝐞i=𝐞jT⁒P-1⁒Ak⁒P⁒𝐞j⁒ for all ⁒k∈[r]⁒.
Lemma 3.

Let L be a field, let n be a positive integer, and let ∼ be an equivalence relation on [n] such that if i∼j and iβ©½kβ©½j then k∼i. Let B1,…,Br∈Mn⁒(L) be pairwise commuting upper triangular matrices. If these matrices and ∼ are related such that

i∼j if and only ifβ€ƒπžiT⁒Bk⁒𝐞i=𝐞jT⁒Bk⁒𝐞j⁒ for all ⁒k∈[r]⁒,

then there exists a matrix Q∈GLn⁒(L) such that:

  1. 1.

    If 𝐞iT⁒Q-1⁒Bk⁒Q⁒𝐞jβ‰ 0 then i∼j and iβ©½j.

  2. 2.

    If i∼j then 𝐞iT⁒Q-1⁒Bk⁒Q⁒𝐞j=𝐞iT⁒Bk⁒𝐞j.

The wanted R is then P⁒Q.

Title simultaneous upper triangular block-diagonalization of commuting matrices
Canonical name SimultaneousUpperTriangularBlockdiagonalizationOfCommutingMatrices
Date of creation 2013-03-22 15:29:35
Last modified on 2013-03-22 15:29:35
Owner lars_h (9802)
Last modified by lars_h (9802)
Numerical id 4
Author lars_h (9802)
Entry type Theorem
Classification msc 15A21
Related topic JordanCanonicalFormTheorem
Related topic IfABInM_nmathbbCABBAThenQHAQT_1QHBQT_2