special elements in a relation algebra
Let A be a relation algebra with operators (∨,∧,;,′,-,0,1,i) of type (2,2,2,1,1,0,0,0). Then a∈A is called a
-
•
function element if e-;e≤i,
-
•
injective element if it is a function element such that e;e-≤i,
-
•
surjective element if e-;e=i,
-
•
reflexive element if i≤a,
-
•
symmetric element if a-≤a,
-
•
transitive element if a;a≤a,
-
•
subidentity if a≤i,
-
•
antisymmetric element if a∧a- is a subidentity,
-
•
equivalence element if it is symmetric
and transitive
(not necessarily reflexive
!),
-
•
domain element if a;1=a,
-
•
range element if 1;a=a,
-
•
ideal element if 1;a;1=a,
-
•
rectangle if a=b;1;c for some b,c∈A, and
-
•
square if it is a rectangle where b=c (using the notations above).
These special elements are so named because they are the names of the corresponding binary relations on a set. The following table shows the correspondence.
element in relation algebra A | binary relation on set S |
---|---|
function element | function (on S) |
injective element | injection |
surjective element | surjection |
reflexive element | reflexive relation |
symmetric element | symmetric relation |
transitive element | transitive relation |
subidentity | IT:= where |
antisymmetric element | antisymmetric relation |
equivalence element | symmetric reflexive relation (not an equivalence relation![]() |
domain element | where |
range element | where |
ideal element | |
rectangle | |
square | , where |