square root of polynomial
The f, denoted by √f, is any polynomial g having the square g2 equal to f. For example, √9x2-30x+25=3x-5 or -3x+5.
A polynomial needs not have a square root, but if it has a square root g, then also the opposite polynomial -g is its square root.
Algorithm. The idea of the squaring
(a+b+c+..)2=(a)a+(2a+b)b+(2a+2b+c)c+.. |
(see the square of sum) gives a method for getting the square root of a polynomial:
-
•
The .
-
•
And so on.
In the examples below, on the .
Example 1. √9x4+6x3-11x2-4x+4= ?
√ | (9x4 | +6x3 | -11x2 | -4x | +4) | = | ± | (3x2 | +x | -2) |
9x4 | 3x2 | |||||||||
6x3 | -11x2 | 6x2 | +x | |||||||
6x3 | +x2 | x | ||||||||
-12x2 | -4x | +4 | 6x2 | +2x | -2 | |||||
-12x2 | -4x | +4 | -2 | |||||||
0 |
Example 2. √x6-2x5-x4+3x2+2x+1= ?
√ | (1 | +2x | +3x2 | -x4 | -2x5 | +x6) | = | ± | (1 | +x | +x2 | -x3) | |
1 | 1 | ||||||||||||
2x | +3x2 | 2 | +x | ||||||||||
2x | +x2 | +x | |||||||||||
2x2 | -x4 | 2 | +2x | +x2 | |||||||||
2x2 | +2x3 | +x4 | x2 | ||||||||||
-2x3 | -2x4 | -2x5 | +x6 | 2 | +2x | +2x2 | -x3 | ||||||
-2x3 | -2x4 | -2x5 | +x6 | -x3 | |||||||||
0 |
Remark. The procedure may give a Taylor series expansion of the square root, if it is not a polynomial. E.g. we get
√1+x=1+12x-18x2+116x3-5128x4+-… |
References
- 1 Meyers Rechenduden. Erster verbesserter Neudruck. Bibliographisches Institut AG, Mannheim (1960).
Title | square root of polynomial |
---|---|
Canonical name | SquareRootOfPolynomial |
Date of creation | 2013-03-22 15:32:06 |
Last modified on | 2013-03-22 15:32:06 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 17 |
Author | pahio (2872) |
Entry type | Algorithm |
Classification | msc 26C99 |
Classification | msc 12E05 |
Synonym | calculation of square root of polynomial |
Related topic | SquareOfSum |
Related topic | BombellisMethodOfComputingSquareRoots |