Stirling polynomial


Stirling’s polynomials Sk(x) are defined by the generating functionMathworldPlanetmath

(t1-e-t)x+1=k=0Sk(x)k!tk.

The sequence Sk(x-1) is of binomial type, since Sk(x+y-1)=i=0k(ki)Si(x-1)Sk-i(y-1). Moreover, this basic recursion holds: Sk(x)=(x-k)Sk(x-1)x+kSk-1(x+1).

These are the first polynomials:

  1. 1.

    S0(x)=1;

  2. 2.

    S1(x)=12(x+1);

  3. 3.

    S2(x)=112(3x2+5x+2);

  4. 4.

    S3(x)=18(x3+2x2+x);

  5. 5.

    S4(x)=1240(15x4+30x3+5x2-18x-8).

In addition we have these special values:

  1. 1.

    Sk(-m)=(-1)k(k+m-1k)Sk+m-1,m-1, where Sm,n denotes Stirling numbers of the second kind. Conversely, Sn,m=(-1)n-m(nm)Sn-m(-m-1);

  2. 2.

    Sk(-1)=δk,0;

  3. 3.

    Sk(0)=(-1)kBk, where Bk are Bernoulli’s numbers;

  4. 4.

    Sk(1)=(-1)k+1((k-1)Bk+kBk-1);

  5. 5.

    Sk(2)=(-1)k2((k-1)(k-2)Bk+3k(k-2)Bk-1+2k(k-1)Bk-2);

  6. 6.

    Sk(k)=k!;

  7. 7.

    Sk(m)=(-1)k(mk)sm+1,m+1-k, where sm,n are Stirling numbers of the first kind. They may be recovered by sn,m=(-1)n-m(n-1n-m)Sn-m(n-1).

Explicit representations involving Stirling numbers can be deduced with Lagrange’s interpolation formula:

Sk(x)=n=0k(-1)k-nSk+n,n(x+nn)(x+k+1k-n)(k+nn)=n=0k(-1)nsk+n+1,n+1(x-kn)(x-k-n-1k-n)(k+nk).

These following formulae hold as well:

(k+mk)Sk(x-m)=i=0k(-1)k-i(k+mi)Sk-i+m,mSi(x),
(k-mk)Sk(x+m)=i=0k(k-mi)sm,m-k+iSi(x).
Title Stirling polynomialMathworldPlanetmath
Canonical name StirlingPolynomial
Date of creation 2013-03-22 15:38:36
Last modified on 2013-03-22 15:38:36
Owner kronos (12218)
Last modified by kronos (12218)
Numerical id 9
Author kronos (12218)
Entry type Definition
Classification msc 05A15