## You are here

Homestrobogrammatic number

## Primary tabs

# strobogrammatic number

A strobogrammatic number is a number that, given a base and given a set of glyphs, appears the same whether viewed normally or upside down. In base 10, given a set of glyphs where 0, 1 and 8 are symmetrical around the horizontal axis, and 6 and 9 are the same as each other upside down (such as the digit characters in ASCII using the font Stylus BT), the first few strobogrammatic numbers are:

1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001 (sequence A000787 in OEIS)

Like the concept of repunits and palindromic numbers, the concept of strobogrammatic numbers is base-dependent. Unlike palindromicity it is also font dependent. But the concept of strobogrammatic numbers is not neatly expressible algebraically, the way that the concept of repunits is, or even the concept of palindromic numbers.

There are sets of glyphs for writing numbers in base 10, such as the Devanagari and Gurmukhi of India in which the numbers listed above are not strobogrammatic at all.

In binary, given a glyph for 1 consisting of a single line without hooks or serifs, all palindromic numbers are strobogrammatic, which means that all Mersenne numbers are strobogrammatic.

## Mathematics Subject Classification

11A63*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new question: numerical method (implicit) for nonlinear pde by roozbe

new question: Harshad Number by pspss

Sep 14

new problem: Geometry by parag

Aug 24

new question: Scheduling Algorithm by ncovella

new question: Scheduling Algorithm by ncovella