substitution notation

The following are two commonly used substitution notations for calculating definite integrals with the antiderivative:

• β’

$\int_{a}^{b}f(x)\,dx=\left[F(x)\right]_{a}^{b}$

• β’

$\int_{a}^{b}f(x)\,dx=F(x)|_{a}^{b}$

Here, the right hand the difference β$F(b)-F(a)$. βFor example, one has

 $\int_{1}^{2}\frac{1}{x}\,dx\;=\;\left[\ln x\right]_{1}^{2}.$

In Finland (only?) the corresponding notation is

 $\int_{1}^{2}\frac{1}{x}\,dx\;=\;\operatornamewithlimits{\Big{/}}_{\!\!\!1}^{\,% \quad 2}\ln x$

which may be somewhat better;β it is read in same manner as the definite integral notation, βsijoitus 1:stΓ€ 2:een ln xβ (literally: βsubstitution from 1 to 2 βln xβ).β The position of the substitution symbol in front of the function to be substituted is perhaps more natural in the sense that the symbol has an operator (as e.g. the summing symbol).β One of benefits of the Finnish notation is that one can comfortably clarify in it which is the variable to be substituted (as in the sum notation), e.g. in the case

 $\int_{0}^{\pi}\sin{tx}\,dt\;=\;-\frac{1}{x}\operatornamewithlimits{\Big{/}}_{% \!\!\!t=0}^{\,\quad\pi}\cos{tx}.$

The notation

 $\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,\quad b}\!F(x)\;:=\;F(b)-F(a)$

is extended also to such cases as

 $\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,\quad\infty}\!F(x)\;:=\;\lim_{b% \to\infty}\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,\quad b}\!F(x).$

Formulae

• β’

$\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\!F(x)\;=\;-\!% \operatornamewithlimits{\Big{/}}_{\!\!\!b}^{\,a}\!F(x)$

• β’

$\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\!kF(x)\;=\;k\!% \operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\!F(x)$

• β’

$\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\![F_{1}(x)+\ldots+F_{n}(x)]\;% =\;\operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\!F_{1}(x)+\ldots+% \operatornamewithlimits{\Big{/}}_{\!\!\!a}^{\,b}\!F_{n}(x)$

• β’

$\int_{a}^{b}u(x)\,v^{\prime}(x)\,dx\;=\;\operatornamewithlimits{\Big{/}}_{\!\!% \!a}^{\,b}\!u(x)\,v(x)-\int_{a}^{b}u^{\prime}(x)\,v(x)\,dx$

Note.β There are in Finland also some other βnationalβ, unofficial mathematical notations used in universities, e.g.

 $-\!\!\!\ni\!\!\!-$

which means βsuch thatβ.β For example, one may write

 $\forall\,x\in\mathbb{Z}\;\exists\,y\in\mathbb{Z}\;\;-\!\!\!\ni\!\!\!-\;\;x\!+% \!y=0.$
 Title substitution notation Canonical name SubstitutionNotation Date of creation 2013-03-22 15:08:12 Last modified on 2013-03-22 15:08:12 Owner pahio (2872) Last modified by pahio (2872) Numerical id 18 Author pahio (2872) Entry type Topic Classification msc 26A42 Related topic HermitePolynomials Related topic AreaUnderGaussianCurve Related topic SineIntegralInInfinity Related topic Tractrix Related topic FourierSineAndCosineSeries Related topic ProofOfClosedDifferentialFormsOnASimpleConnectedDomain Related topic TaylorSeriesOfArcusTangent Related topic PerimeterOfAstroid Related topic PotentialOfHollowBall Related topic VolumeOfEllipsoid Related topic Arc