sum of values of holomorphic function
Let be a holomorphic function on a simple closed curve and inside it. If are inside the simple zeros of a function holomorphic on and inside, then
(1) |
where the contour integral is taken anticlockwise.
The if some of the zeros are multiple and are counted with multiplicities (http://planetmath.org/Pole).
If the zeros of have the multiplicities and the function has inside also the poles with the multiplicities , then (1) must be written
(2) |
The special case gives from (2) the argument principle.
References
- 1 Ernst Lindelöf: Le calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars, Paris (1905).
Title | sum of values of holomorphic function |
---|---|
Canonical name | SumOfValuesOfHolomorphicFunction |
Date of creation | 2013-03-22 19:15:30 |
Last modified on | 2013-03-22 19:15:30 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 6 |
Author | pahio (2872) |
Entry type | Theorem |
Classification | msc 30E20 |