supersolvable group


A group G is supersolvable if it has a finite normal seriesMathworldPlanetmath

G=G0G1Gn=1

with the property that each factor group Gi-1/Gi is cyclic.

A supersolvable group is solvable.

Finitely generatedMathworldPlanetmathPlanetmathPlanetmath nilpotent groupsMathworldPlanetmath are supersolvable.

Title supersolvable group
Canonical name SupersolvableGroup
Date of creation 2013-03-22 13:58:44
Last modified on 2013-03-22 13:58:44
Owner mclase (549)
Last modified by mclase (549)
Numerical id 5
Author mclase (549)
Entry type Definition
Classification msc 20F16
Classification msc 20D10
Related topic PolycyclicGroup
Defines supersolvable