topological invariant


A topological invariantPlanetmathPlanetmath of a space X is a property that depends only on the topologyMathworldPlanetmathPlanetmath of the space, i.e. it is shared by any topological space homeomorphic to X. Common examples include compactness (http://planetmath.org/CompactPlanetmathPlanetmath), connectedness (http://planetmath.org/ConnectedSpace), Hausdorffness (http://planetmath.org/T2Space), Euler characteristicMathworldPlanetmath, orientability (http://planetmath.org/Orientation2), dimensionMathworldPlanetmath (http://planetmath.org/InvarianceOfDimension), and like homology, homotopy groupsMathworldPlanetmath, and K-theory.

Properties of a space depending on an extra structureMathworldPlanetmath such as a metric (i.e. volume, curvature, symplectic invariants) typically are not topological invariants, though sometimes there are useful interpretationsMathworldPlanetmath of topological invariants which seem to depend on extra information like a metric (for example, the Gauss-Bonnet theorem).

Title topological invariant
Canonical name TopologicalInvariant
Date of creation 2013-03-22 13:42:07
Last modified on 2013-03-22 13:42:07
Owner bwebste (988)
Last modified by bwebste (988)
Numerical id 5
Author bwebste (988)
Entry type Definition
Classification msc 54-00