## You are here

HomeTschirnhaus transformations

## Primary tabs

# Tschirnhaus transformations

A polynomial transformation which transforms a polynomial to another with certain zero-coefficients is called a
*Tschirnhaus Transformation*. It is thus an invertible transformation of the form $x\mapsto g(x)/h(x)$ where $g,h$ are polynomials over the base field $K$ (or some subfield of the splitting field of the polynomial being transformed). If $\gcd(h(x),f(x))=1$ then the Tschirnhaus transformation becomes a polynomial transformation mod f.

Specifically, it concerns a substitution that reduces finding the roots of the polynomial

$\textmd{p}=T^{n}+a_{1}T^{{n-1}}+...+a_{n}=\prod_{{i=1}}^{n}(T-r_{i})\in k[T]$ |

to finding the roots of another q - with less parameters - and solving an auxiliary polynomial equation s, with $\deg(s)<\deg(p\cap q).$

Historically, the transformation was applied to reduce the general quintic equation, to simpler resolvents. Examples due to Hermite and Klein are respectively: The principal resolvent

$K(X):=X^{5}+a_{0}X^{2}+a_{1}X+a_{3}$ |

and the Bring-Jerrard form

$K(X):=X^{5}+a_{1}X+a_{2}$ |

Tschirnhaus transformations are also used when computing Galois groups to remove repeated roots in resolvent polynomials. Almost any transformation will work but it is extremely hard to find an efficient algorithm that can be proved to work.

## Mathematics Subject Classification

12E05*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new question: numerical method (implicit) for nonlinear pde by roozbe

new question: Harshad Number by pspss

Sep 14

new problem: Geometry by parag

Aug 24

new question: Scheduling Algorithm by ncovella

new question: Scheduling Algorithm by ncovella