Processing math: 86%

unramified action


Let K be a number fieldMathworldPlanetmath and let ν be a discrete valuationPlanetmathPlanetmath on K (this might be, for example, the valuationMathworldPlanetmath attached to a prime idealMathworldPlanetmathPlanetmathPlanetmath 𝔓 of K).

Let Kν be the completion of K at ν, and let 𝒪ν be the ring of integersMathworldPlanetmath of Kν, i.e.

𝒪ν={kKνν(k)0}

The maximal idealMathworldPlanetmath of 𝒪ν will be denoted by

={kKνν(k)>0}

and we denote by kν the residue fieldMathworldPlanetmath of Kν, which is

kν=𝒪ν/

We will consider three different global Galois groupsMathworldPlanetmath, namely

GˉK/K=Gal(ˉK/K)
G¯Kν/Kν=Gal(¯Kν/Kν)
G¯kν/kν=Gal(¯kν/kν)

where ˉK,¯Kν,¯kν are algebraic closuresMathworldPlanetmath of the corresponding field. We also define notation for the inertia group of G¯Kν/Kν

IνG¯Kν/Kν
Definition 1.

Let S be a set and suppose there is a group actionMathworldPlanetmath of Gal(¯Kν/Kν) on S. We say that S is unramified at ν, or the action of G¯Kν/Kν on S is unramified at ν, if the action of Iν on S is trivial, i.e.

σ(s)=s

Remark: By Galois theoryMathworldPlanetmath we know that, Kνnr, the fixed field of Iν, the inertia subgroupMathworldPlanetmathPlanetmath, is the maximal unramified extensionPlanetmathPlanetmath of Kν, so

IνGal(Kν¯/Kνnr)
Title unramified action
Canonical name UnramifiedAction
Date of creation 2013-03-22 13:56:26
Last modified on 2013-03-22 13:56:26
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 5
Author alozano (2414)
Entry type Definition
Classification msc 11S15
Synonym set is unramified at a valuation
Related topic InfiniteGaloisTheory
Related topic DecompositionGroup
Related topic Valuation