value of Riemann zeta function at s=4


By applying Parseval’s identityPlanetmathPlanetmath (Lyapunov equation (http://planetmath.org/PersevalEquality)) to the Fourier series

a02+(a1cosx+b1sinx)+(a2cos2x+b2sin2x)+

of x2 on the interval[-π,π],  one may derive the value of Riemann zeta functionDlmfDlmfMathworldPlanetmath at  s=4.

Let us first find the needed Fourier coefficients an and bn.  Since x2 defines an even functionMathworldPlanetmath, we have

bn=0n=1, 2, 3,.

Then

a0=1π-ππx2𝑑x=2π0πx2𝑑x=2π23.

For other coefficients an, we must perform twice integrations by parts:

an=1π-ππx2cosnxdx =2π0πx2cosnxdx
=2π(/0πx2sinnxn-0π2xsinnxn𝑑x)
=-4nπoπxsinnxdx
=-4nπ(/0πx-cosnxn-0π1-cosnxn𝑑x)
=-4nπ/0π(-xcosnxn-sinnxn2)
=4cosnπn2=4(-1)nn2n=1, 2, 3,

Thus

x2=π23+n=14(-1)nn2cosnxfor-πxπ.

The left hand side of Parseval’s identity

12π-ππ(f(x))2𝑑x=a024+12n=1(an2+bn2)

reads now

1π0π(x2)2𝑑x=1π/0πx55=π45

and its right hand side

14(2π23)2+12n=1(4n2)2=π49+8n=11n4=π49+8ζ(4).

Accordingly, we obtain the result

ζ(4)= 1+124+134+=π490. (1)
Title value of Riemann zeta function at s=4
Canonical name ValueOfRiemannZetaFunctionAtS4
Date of creation 2013-03-22 18:22:06
Last modified on 2013-03-22 18:22:06
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 7
Author pahio (2872)
Entry type Example
Classification msc 11M06
Related topic SubstitutionNotation
Related topic CosineAtMultiplesOfStraightAngle
Related topic ValueOfTheRiemannZetaFunctionAtS2