values of the Riemann zeta function in terms of Bernoulli numbers
Theorem.
Let be an even integer and let be the th Bernoulli number. Let be the Riemann zeta function. Then:
Moreover, by using the functional equation (http://planetmath.org/RiemannZetaFunction) , one calculates for all :
which shows that for odd. For even, one has:
Remark.
The zeroes of the zeta function shown above, for odd, are usually called the trivial zeroes of the Riemann zeta function, while the non-trivial zeroes are those in the critical strip.
Title | values of the Riemann zeta function in terms of Bernoulli numbers |
---|---|
Canonical name | ValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers |
Date of creation | 2013-03-22 15:12:07 |
Last modified on | 2013-03-22 15:12:07 |
Owner | Mathprof (13753) |
Last modified by | Mathprof (13753) |
Numerical id | 7 |
Author | Mathprof (13753) |
Entry type | Theorem |
Classification | msc 11M99 |
Related topic | BernoulliNumber |
Related topic | ValueOfTheRiemannZetaFunctionAtS2 |