vector potential
Let →U=→U(x,y,z) be a vector field in ℝ3 with continuous
partial derivatives
. Then the following three conditions are equivalent
(http://planetmath.org/Equivalent3):
-
•
The surface integrals of →U over all contractible closed surfaces (http://planetmath.org/Sphere) S vanish:
∮S→U⋅𝑑→S=0 -
•
The divergence
of →U vanishes everywhere in the field (http://planetmath.org/VectorField):
∇⋅→U=0 -
•
There exists the vector potential
→A=→A(x,y,z) of →U:
∇×→A=→U
References
- 1 K. Väisälä: Vektorianalyysi. Werner Söderström Osakeyhtiö, Helsinki (1961).
Title | vector potential |
---|---|
Canonical name | VectorPotential |
Date of creation | 2013-03-22 15:42:54 |
Last modified on | 2013-03-22 15:42:54 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 8 |
Author | pahio (2872) |
Entry type | Definition |
Classification | msc 26B12 |
Related topic | IntegrationWithRespectToSurfaceArea |
Related topic | LaminarField |
Related topic | KalleVaisala |