Zermelo’s well-ordering theorem


If X is any set whatsoever, then there exists a well-ordering of X. The well-ordering theorem is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to the Axiom of ChoiceMathworldPlanetmath.

Title Zermelo’s well-ordering theorem
Canonical name ZermelosWellorderingTheorem
Date of creation 2013-03-22 12:58:55
Last modified on 2013-03-22 12:58:55
Owner yark (2760)
Last modified by yark (2760)
Numerical id 5
Author yark (2760)
Entry type Theorem
Classification msc 03E25
Synonym well-ordering principle
Related topic EquivalenceOfTheAxiomOfChoiceAndTheWellOrderingTheorem
Related topic EquivalenceOfTheAxiomOfChoiceAndTheWellOrderingTheorem2
Related topic HaudorffsMaximumPrinciple
Related topic ZornsLemmeAndTheWellOrderingTheoremEquivalenceOfHaudorffsMaximumPrinciple
Related topic ZornsLemmaAndTheWellOrderingTheoremEquiv