zero ideal


The subset {0} of a ring R is the least two-sided idealMathworldPlanetmath of R.  As a principal idealMathworldPlanetmathPlanetmathPlanetmathPlanetmath, it is often denoted by

(0)

and called the zero idealMathworldPlanetmathPlanetmath.

The zero ideal is the identity elementMathworldPlanetmath in the addition of ideals and the absorbing element in the multiplication of ideals (http://planetmath.org/ProductOfIdeals).  The quotient ringMathworldPlanetmath R/(0) is trivially isomorphicPlanetmathPlanetmathPlanetmath to R.

By the entry quotient ring modulo prime ideal, (0) is a prime idealMathworldPlanetmathPlanetmath if and only if R in an integral domainMathworldPlanetmath.

Title zero ideal
Canonical name ZeroIdeal1
Date of creation 2013-03-22 18:44:40
Last modified on 2013-03-22 18:44:40
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 7
Author pahio (2872)
Entry type Definition
Classification msc 14K99
Classification msc 16D25
Classification msc 11N80
Classification msc 13A15
Related topic MinimalPrimeIdeal
Related topic PrimeRing
Related topic ZeroModule