# arithmetic derivative

The arithmetic derivative $n^{\prime}$ of a natural number  $n$ is defined by the following rules:

To define the arithmetic derivative of a negative number, we first note that $1^{\prime}=0$ by the Leibniz rule ($1^{\prime}=(1\cdot 1)^{\prime}=1\cdot 1^{\prime}+1^{\prime}\cdot 1=2\cdot 1^{\prime}$, so $1^{\prime}=0$), and further that we must have

 $\displaystyle 0=1^{\prime}=\left((-1)\cdot(-1)\right)^{\prime}=-2\cdot(-1)^{% \prime},$

so $(-1)^{\prime}=0$. The product rule  now requires that we define $(-n)^{\prime}=-(n^{\prime})+n(-1)^{\prime}=-(n^{\prime})$.

Further, we can extend this definition to rational numbers by insisting that the quotient rule  holds, i.e. for a prime $p$ we should have

 $\displaystyle 0=1^{\prime}=\left(p\cdot\frac{1}{p}\right)^{\prime}=\left(\frac% {1}{p}\right)^{\prime}p+\frac{1}{p},$

giving us that

 $\left(\frac{1}{p}\right)^{\prime}=-\frac{1}{p^{2}},$

The arithmetic derivatives for the first few positive integers are 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, etc.

As a consequence of $p^{\prime}=1$ for a prime $p$, the arithmetic derivative of a semiprime (whether squarefree  or not) works out to $(pq)^{\prime}=p^{\prime}q+pq^{\prime}=1p+q1=p+q$. For example, the arithmetic derivative of 10 is 7, which is 2 plus 5.

The only cases of $n^{\prime}=n$ for $-1 are 0, 4, 27.

 $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ $n$ $n^{\prime}$ 0 0 10 7 20 24 30 31 40 68 50 45 60 92 70 59 80 176 90 123 1 0 11 1 21 10 31 1 41 1 51 20 61 1 71 1 81 108 91 20 2 1 12 16 22 13 32 80 42 41 52 56 62 33 72 156 82 43 92 96 3 1 13 1 23 1 33 14 43 1 53 1 63 51 73 1 83 1 93 34 4 4 14 9 24 44 34 19 44 48 54 81 64 192 74 39 84 124 94 49 5 1 15 8 25 10 35 12 45 39 55 16 65 18 75 55 85 22 95 24 6 5 16 32 26 15 36 60 46 25 56 92 66 61 76 80 86 45 96 272 7 1 17 1 27 27 37 1 47 1 57 22 67 1 77 18 87 32 97 1 8 12 18 21 28 32 38 21 48 112 58 31 68 72 78 71 88 140 98 77 9 6 19 1 29 1 39 16 49 14 59 1 69 26 79 1 89 1 99 75

## References

• 1 EJ Barbeau, “Remark on an arithmetic derivative”. Can. Math. Bull. 4 (1961): 117 - 122
Title arithmetic derivative ArithmeticDerivative 2013-03-22 13:35:09 2013-03-22 13:35:09 PrimeFan (13766) PrimeFan (13766) 14 PrimeFan (13766) Definition msc 11Z05 Prime