# contradiction

A contradiction   occurs when the statements $p$ and $\neg p$ are shown to be true simultaneously. This concept appears most often in a proof by contradiction  (also known as reductio ad absurdum  ), which is proving a statement by supposing its negation  is true and logically deducing an absurd statement. That is, in attempting to prove $q$, one may assume $\neg q$ and attempt to obtain a statement of the form $\neg r$, where $r$ is a statement that is assumed or known to be true.

Proofs by contradiction can become confusing. This is especially the case when such proofs are nested; i.e. (http://planetmath.org/Ie), a proof by contradiction occurs within a proof by contradiction. Some mathematicians prefer to use a direct proof whenever possible, as such are easier to follow in general. A small minority of mathematicians go so far as to reject proof by contradiction as a valid proof technique. It should be pointed out that something good can be said for proof by contradiction: If one wants to prove a statement of the form $p\implies q$, using the technique of proof by contradiction gives an additional hypothesis   with which to work.

Title contradiction Contradiction 2013-03-22 16:02:48 2013-03-22 16:02:48 Wkbj79 (1863) Wkbj79 (1863) 9 Wkbj79 (1863) Definition msc 03F07 msc 03B05 ContradictoryStatement proof by contradiction reductio ad absurdum