# Banach space valued analytic functions

Moreover, the classical theory of complex analytic functions can still be applied, with suitable adjustments, to Banach space valued functions. In this way, important theorems such as Liouville’s theorem remain valid under this generalization  .

In this entry we provide the definitions of analyticity and holomorphicity for Banach space valued functions, we give a definition of countour for this type of functions and discuss some useful results which enable the generalization of the classical theory.

## 0.1 Analiticity

Let $\Omega\subseteq\mathbb{C}$ be an open set and $X$ a complex Banach space.

A function $f:\Omega\longrightarrow X$ is said to be analytic if each point $\lambda_{0}\in\Omega$ has a neighborhood in which $f$ is the uniform limit of a power series  with coefficients in $X$ centered in $\lambda_{0}$

 $f(\lambda)=\sum_{k=0}^{\infty}a_{k}(\lambda-\lambda_{0})^{k},\;\;\;\;\;\;\;a_{% k}\in X$

## 0.2 Holomorphicity

A function $f:\Omega\longrightarrow X$ is said to be at a point $\lambda_{0}\in\Omega$ if the following limit exists (as a limit in $X$)

 $f^{\prime}(\lambda_{0}):=\lim_{\lambda\rightarrow\lambda_{0}}\frac{f(\lambda)-% f(\lambda_{0})}{\lambda-\lambda_{0}}$

$f$ is said to be in $S\subset\Omega$ if it is differentiable in a neighborhood of $S$.

The following Lemma is usefull in the generalization of the classical theory of holomorphic functions.

Lemma 1 - Let $f:\Omega\longrightarrow X$ be a differentiable function at $\lambda_{0}\in\Omega$. Let $\phi:X\longrightarrow\mathbb{C}$ be a continuous   linear functional  in $X$. Then $\phi\circ f:\Omega\longrightarrow\mathbb{C}$ is differentiable at $\lambda_{0}$ (in the classical sense) and

 $(\phi\circ f)^{\prime}(\lambda_{0})=\phi(f^{\prime}(\lambda_{0}))$

Proof :

 $\displaystyle(\phi\circ f)^{\prime}(\lambda_{0})$ $\displaystyle=$ $\displaystyle\lim_{\lambda\rightarrow\lambda_{0}}\frac{\phi(f(\lambda))-\phi(f% (\lambda_{0}))}{\lambda-\lambda_{0}}$ $\displaystyle=$ $\displaystyle\lim_{\lambda\rightarrow\lambda_{0}}\phi\left(\frac{f(\lambda)-f(% \lambda_{0})}{\lambda-\lambda_{0}}\right)$ $\displaystyle=$ $\displaystyle\phi\left(\lim_{\lambda\rightarrow\lambda_{0}}\frac{f(\lambda)-f(% \lambda_{0})}{\lambda-\lambda_{0}}\right)$ $\displaystyle=$ $\displaystyle\phi(f^{\prime}(\lambda_{0}))\;\;\;\;\square$

## 0.3 Contour Integrals

The usual way to relate the theory of complex analytic functions with the theory of holomorphic functions is by the use contour integrals. It is not different for Banach space valued functions.

We will define contour integrals for continuous Banach space valued functions but there’s no particular reason, besides the simplicity of , for restricting to this type of functions.

Let $\gamma:[a,b]\longrightarrow\mathbb{C}$ be a piecewise smooth path in $\Omega\subseteq\mathbb{C}$. Let $f:\Omega\longrightarrow X$ be a continuous function. Let $\mathcal{P}=\{t_{0},t_{1},\dots,t_{n}\}$ be a partition  of $[a,b]$.

We define the

 $R_{\gamma}(f,\mathcal{P}):=\sum_{k=1}^{n}f(\gamma(t_{k}))(\gamma(t_{k})-\gamma% (t_{k-1}))$

and the of a partition $\mathcal{P}$ as

 $\|\mathcal{P}\|:=\max_{k}|t_{k}-t_{k-1}|$

The contour integral of $f$ along $\gamma$ is the element of $X$ defined by

 $\int_{\gamma}f(\lambda)d\lambda:=\lim_{\|\mathcal{P}\|\rightarrow 0}R_{\gamma}% (f,\mathcal{P})$

It can be shown that this limit always exists for continuous functions $f$.

The following Lemma is also usefull

Lemma 2 - Let $\gamma$ and $f$ be as above. Let $\phi:\longrightarrow\mathbb{C}$ be a continuous linear functional in $X$. Then

 $\phi\left(\int_{\gamma}f(\lambda)d\lambda\right)=\int_{\gamma}\phi\circ f(% \lambda)d\lambda$

Proof -

 $\displaystyle\phi\left(\int_{\gamma}f(\lambda)d\lambda\right)$ $\displaystyle=$ $\displaystyle\phi\left(\lim_{\|\mathcal{P}\|\rightarrow 0}R_{\gamma}(f,% \mathcal{P})\right)$ $\displaystyle=$ $\displaystyle\phi\left(\lim_{\|\mathcal{P}\|\rightarrow 0}\sum_{k=1}^{n}f(% \gamma(t_{k}))(\gamma(t_{k})-\gamma(t_{k-1}))\right)$ $\displaystyle=$ $\displaystyle\lim_{\|\mathcal{P}\|\rightarrow 0}\phi\left(\sum_{k=1}^{n}f(% \gamma(t_{k}))(\gamma(t_{k})-\gamma(t_{k-1}))\right)$ $\displaystyle=$ $\displaystyle\lim_{\|\mathcal{P}\|\rightarrow 0}\sum_{k=1}^{n}\phi(f(\gamma(t_% {k})))(\gamma(t_{k})-\gamma(t_{k-1}))$ $\displaystyle=$ $\displaystyle\int_{\gamma}\phi\circ f(\lambda)d\lambda\;\;\square$

## 0.4 Remarks

We have seen how the classical definitions generalize in straightforward way to Banach space valued functions. In fact, as we said before, the whole classical theory remains valid with proper adjustments.

As a example, we will prove a well-known theorem in complex analysis this time for Banach space valued functions.

Theorem - Let $f:\Omega\longrightarrow X$ a continuous function with antiderivative $F$. Let $\gamma:[a,b]\longrightarrow\Omega$ be a piecewise smooth path. Then

 $\int_{\gamma}f(\lambda)d\lambda=F(\gamma(b))-F(\gamma(a))$

Proof : Let $\phi:X\longrightarrow\mathbb{C}$ be a continuous linear functional. Using Lemmas 1 and 2

 $\phi\left(\int_{\gamma}f(\lambda)d\lambda\right)=\int_{\gamma}\phi\circ f(% \lambda)d\lambda=\int_{\gamma}\phi\circ F^{\prime}(\lambda)d\lambda=\int_{% \gamma}(\phi\circ F)^{\prime}(\lambda)d\lambda$

$(\phi\circ F)^{\prime}$ is a continuous function $\Omega\longrightarrow\mathbb{C}$. As we know, this theorem is valued for complex valued functions. Then

 $\int_{\gamma}(\phi\circ F)^{\prime}(\lambda)d\lambda=(\phi\circ F)(\gamma(b))-% (\phi\circ F)(\gamma(a))=\phi[F(\gamma(b))-F(\gamma(a))]$

Therefore

 $\phi\left(\int_{\gamma}f(\lambda)d\lambda-(F(\gamma(b))-F(\gamma(a)))\right)=0% \;\;\;\;\forall_{\phi\in X^{\prime}}$

As $X$ is a Banach space, its dual space  $X^{\prime}$ separates points (http://planetmath.org/DualSpaceSeparatesPoints), so we must have $\int_{\gamma}f(\lambda)d\lambda-(F(\gamma(b))-F(\gamma(a)))=0$ i.e.

 $\int_{\gamma}f(\lambda)d\lambda=F(\gamma(b))-F(\gamma(a))\;\;\;\square$
 Title Banach space valued analytic functions Canonical name BanachSpaceValuedAnalyticFunctions Date of creation 2013-03-22 17:29:33 Last modified on 2013-03-22 17:29:33 Owner asteroid (17536) Last modified by asteroid (17536) Numerical id 10 Author asteroid (17536) Entry type Feature Classification msc 46G20 Classification msc 46G12 Classification msc 46G10 Classification msc 30G30 Classification msc 47A56 Synonym Banach space valued holomorphic function Synonym analytic Banach space valued function Synonym holomorphic Banach space valued function Defines contour integral of Banach space valued functions