Borel isomorphism
Definition 0.1.
A Borel isomorphism between two Borel spaces^{} $(X;\mathbb{B}(X))$ and $(Y;\mathbb{B}(Y))$ is defined as the bijection $\iota :(X;\mathbb{B}(X))\cong (Y;\mathbb{B}(Y))$.
References
- 1 M.R. Buneci. 2006., http://www.utgjiu.ro/math/mbuneci/preprint/p0024.pdfGroupoid^{} C*-Algebras., Surveys in Mathematics and its Applications, Volume 1: 71–98.
- 2 A. Connes.1979. Sur la théorie noncommutative de l’ integration, Lecture Notes in Math., Springer-Verlag, Berlin, 725: 19-14.
Title | Borel isomorphism |
---|---|
Canonical name | BorelIsomorphism |
Date of creation | 2013-03-22 18:23:05 |
Last modified on | 2013-03-22 18:23:05 |
Owner | bci1 (20947) |
Last modified by | bci1 (20947) |
Numerical id | 5 |
Author | bci1 (20947) |
Entry type | Definition |
Classification | msc 54H05 |
Classification | msc 28A05 |
Synonym | one-to-one and onto correspondence |
Related topic | Bijection |