# continuum

A continuum^{} is a compact^{} connected^{} topological space^{}.
Some authors impose additional conditions and require that the space be nondegenerate, Hausdorff^{},
or metric.

## References

- SS Lynn Arthur Steen and J. Arthur Seebach, Jr, Counterexamples in Topology, Springer-Verlag, 1978, p. 33
- HY John G. Hocking, and Gail S. Young, Topology, Dover Publications, New York, 1988, p. 43
- G Steven A. Gaal, Point Set Topology, Academic Press, New York, 1964, p. 103
- MCG Michael C. Gemignani, Elementary Topology, 2nd ed. Dover Publications, New York, 1990, p. 202
- NEW M.H.A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, 1964, p. 71
- W Stephen Willard, General Topology, Addison-Wesley, Reading, MA, 1970, p. 203
- WI Raymond Louis Wilder, Topology of Manifolds, Amer. Math. Society, Providence, RI, 1963, p. 36
- MI J. van Mill, G.M. Reed, editors, Open Problems in Topology, North-Holland, Amsterdam, 1990, p. 305

Title | continuum |
---|---|

Canonical name | Continuum |

Date of creation | 2013-03-22 18:37:22 |

Last modified on | 2013-03-22 18:37:22 |

Owner | Mathprof (13753) |

Last modified by | Mathprof (13753) |

Numerical id | 5 |

Author | Mathprof (13753) |

Entry type | Definition |

Classification | msc 54F15 |