# isotropic submanifold

If $(M,\omega )$ is a symplectic manifold^{}, then a submanifold^{} $L\subset M$ is isotropic if the
symplectic form vanishes on the tangent space of $L$, that is, $\omega ({v}_{1},{v}_{2})=0$ for all
${v}_{1},{v}_{2}\in {T}_{\mathrm{\ell}}L$ for all $\mathrm{\ell}\in L$.

Title | isotropic submanifold |
---|---|

Canonical name | IsotropicSubmanifold |

Date of creation | 2013-03-22 13:12:26 |

Last modified on | 2013-03-22 13:12:26 |

Owner | bwebste (988) |

Last modified by | bwebste (988) |

Numerical id | 4 |

Author | bwebste (988) |

Entry type | Definition |

Classification | msc 53D05 |

Related topic | LagrangianSubmanifold |