# Kuroda normal form

A formal grammar $G=(\Sigma,N,P,\sigma)$ is in Kuroda normal form if its productions have one of the following forms:

1. 1.

$A\to a$,

2. 2.

$A\to BC$,

3. 3.

$AB\to CD$.

where $a\in\Sigma-N$ and $A,B,C,D\in N$.

Note: Sometimes the form $A\to B$, where $B\in N$ is added to the list above. However, we may remove a production of this form by replacing all occurrences of $B$ by $A$ in every production of $G$.

The usefulness of the Kuroda normal forms is captured in the following result:

Note that the third production form $AB\to CD$ may be replaced by the following productions

1. 1.

$AB\to AX$

2. 2.

$AX\to YX$

3. 3.

$YX\to YD$

4. 4.

$YD\to CD$

where $X,Y$ are new non-terminals introduced to $G$. Note also that, among the new forms, 1 and 3 are right context-sensitive, while 2 and 4 are left context-sensitive. Thus, a grammar in Kuroda normal form is equivalent to a grammar with productions having one of the following forms:

1. 1.

$A\to a$,

2. 2.

$A\to BC$,

3. 3.

$AB\to AC$,

4. 4.

$AB\to CB$.

It can be shown that

###### Theorem 2.

A grammar in Kuroda normal form if it is equivalent to a grammar whose productions are in one of forms $1,2$, or $3$.

By symmetry, a grammar in Kuroda normal form is equivalent to a grammar whose productions are in one of forms $1,2$, or $4$. A grammar whose productions are in one of forms $1,2$, or $3$ is said to be in one-sided normal form.

As a corollary, every $\lambda$-free context-sensitive language (not containing the empty word $\lambda$) can be generated by a grammar in one-sided normal form.

What if we throw in production of the form $A\to\lambda$ in the above list? Then certainly every context-sensitive language has a grammar in this “extended” normal form. In fact, we have

###### Theorem 3.

Every type-0 language can be generated by a grammar whose productions are in one of the following forms:

1. 1.

$A\to a$,

2. 2.

$A\to BC$,

3. 3.

$AB\to AC$,

4. 4.

$A\to\lambda$.

## References

Title Kuroda normal form KurodaNormalForm 2013-03-22 18:58:07 2013-03-22 18:58:07 CWoo (3771) CWoo (3771) 10 CWoo (3771) Definition msc 68Q42 msc 68Q45 GreibachNormalForm ChomskyNormalForm one-sided normal form