modus tollens
The law of modus tollens is the inference rule which allows one to conclude from and . The name “modus tollens” refers to the fact that this rule allows one to take away the conclusion of a conditional statement and conclude the negation of the condition. As an example of this rule, we may cite the following:
The validity of this rule may be established by means of the following truth table:
F | F | T | T | T |
F | T | T | T | F |
T | F | F | F | T |
T | T | T | F | F |
This rule can be used to justify the popular technique of proof by contradiction. In this technique, one assumes a hypothesis and then derives a conclusion . This is tantamount to showing that . Next one demonstrates . Applying modus tollens, one then concludes .
Title | modus tollens |
---|---|
Canonical name | ModusTollens |
Date of creation | 2013-03-22 16:56:03 |
Last modified on | 2013-03-22 16:56:03 |
Owner | rspuzio (6075) |
Last modified by | rspuzio (6075) |
Numerical id | 7 |
Author | rspuzio (6075) |
Entry type | Definition |
Classification | msc 03B22 |
Classification | msc 03B35 |
Classification | msc 03B05 |