# product topology

## Definition

Let $((X_{\alpha},{\mathcal{T}}_{\alpha}))_{\alpha\in A}$ be a family of topological spaces  , and let $Y$ be the Cartesian product (http://planetmath.org/GeneralizedCartesianProduct) of the sets $X_{\alpha}$, that is

 $Y=\prod_{\alpha\in A}X_{\alpha}.$

Recall that an element $y\in Y$ is a function $y\colon A\to\bigcup_{\alpha\in A}X_{\alpha}$ such that $y(\alpha)\in X_{\alpha}$ for each $\alpha\in A$, and that for each $\alpha\in A$ the projection map $\pi_{\alpha}\colon Y\to X_{\alpha}$ is defined by $\pi_{\alpha}(y)=y(\alpha)$ for each $y\in Y$.

The (Tychonoff  ) product topology ${\mathcal{T}}$ for $Y$ is defined to be the initial topology with respect to the projection maps; that is, ${\mathcal{T}}$ is the smallest topology such that each $\pi_{\alpha}$ is continuous  (http://planetmath.org/Continuous).

## Subbase

If $U\subseteq X_{\alpha}$ is open, then $\pi_{\alpha}^{-1}(U)$ is an open set in $Y$. Note that this is the set of all elements of $Y$ in which the $\alpha$ component is restricted to $U$ and all other components are unrestricted. The open sets of $Y$ are the unions of finite intersections   of such sets. That is,

 $\{\,\pi_{\alpha}^{-1}(U)\mid\alpha\in A\hbox{ and }U\in{\mathcal{T}}_{\alpha}\,\}$

is a subbase for the topology on $Y$.

## Theorems

The following theorems assume the product topology on $\prod_{\alpha\in A}X_{\alpha}$. Notation is as above.

###### Theorem 1

Let $Z$ be a topological space and let $f\colon Z\to\prod_{\alpha\in A}X_{\alpha}$ be a function. Then $f$ is continuous if and only if $\pi_{\alpha}\circ f$ is continuous for each $\alpha\in A$.

###### Theorem 2

The product topology on $\prod_{\alpha\in A}X_{\alpha}$ is the topology induced by the subbase

 $\{\pi_{\alpha}^{-1}(U)\mid\alpha\in A\mbox{ and }U\in{\mathcal{T}}_{\alpha}\}.$
###### Theorem 3

The product topology on $\prod_{\alpha\in A}X_{\alpha}$ is the topology induced by the base

 $\biggl{\{}\bigcap_{\alpha\in F}\pi_{\alpha}^{-1}(U_{\alpha})\,\biggm{|}\,F% \mbox{ is a finite subset of }A\mbox{ and }U_{\alpha}\in{\mathcal{T}}_{\alpha}% \mbox{ for each }\alpha\in F\biggr{\}}.$
###### Theorem 4

A net $(x_{i})_{i\in I}$ in $\prod_{\alpha\in A}X_{\alpha}$ converges  to $x$ if and only if each coordinate $(x_{i}^{\alpha})_{i\in I}$ converges to $x^{\alpha}$ in $X_{\alpha}$.

###### Theorem 5

Each projection map $\pi_{\alpha}\colon\prod_{\alpha\in A}X_{\alpha}\to X_{\alpha}$ is continuous and open (http://planetmath.org/OpenMapping).

###### Theorem 6

For each $\alpha\in A$, let $A_{\alpha}\subseteq X_{\alpha}$. Then

 $\overline{\prod_{\alpha\in A}A_{\alpha}}=\prod_{\alpha\in A}\overline{A_{% \alpha}}.$

###### Theorem 7

(Tychonoff’s Theorem) If each $X_{\alpha}$ is compact  , then $\prod_{\alpha\in A}X_{\alpha}$ is compact.

## Comparison with box topology

There is another well-known way to topologize $Y$, namely the box topology. The product topology is a subset of the box topology; if $A$ is finite, then the two topologies are the same.

## References

• 1 J. L. Kelley, General Topology, D. van Nostrand Company, Inc., 1955.
• 2 J. Munkres, Topology (2nd edition), Prentice Hall, 1999.
 Title product topology Canonical name ProductTopology Date of creation 2013-03-22 12:47:09 Last modified on 2013-03-22 12:47:09 Owner CWoo (3771) Last modified by CWoo (3771) Numerical id 38 Author CWoo (3771) Entry type Definition Classification msc 54B10 Synonym Tychonoff product topology Related topic BoxTopology Related topic GeneralizedCartesianProduct Related topic ASpaceMathnormalXIsHausdorffIfAndOnlyIfDeltaXIsClosed Related topic InitialTopology Defines product