8.5.3 The Hopf fibration


We will first construct a structureMathworldPlanetmath of H-spaceMathworldPlanetmath on the circle π•Š1, hence by \autoreflem:hopf-construction we will get a fibrationMathworldPlanetmath over π•Š2 with fiber π•Š1 and total space π•Š1*π•Š1. We will then prove that this join is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to π•Š3.

Lemma 8.5.1.

There is an H-space structure on the circle S1.

Proof.

For the base point of the H-space structure we choose π–»π–Ίπ—Œπ–Ύ. Now we need to define the multiplication operationMathworldPlanetmath ΞΌ:π•Š1Γ—π•Š1β†’π•Š1. We will define the curried form ΞΌ~:π•Š1β†’(π•Š1β†’π•Š1) of ΞΌ by recursion on π•Š1:

ΞΌ~(π–»π–Ίπ—Œπ–Ύ):β‰‘π—‚π–½π•Š1,and  μ~(π—…π—ˆπ—ˆπ—‰):=π–Ώπ—Žπ—‡π–Ύπ—‘π—(h).

where h:∏(x:π•Š1)(x=x) is the function defined in \autorefthm:S1-autohtpy, which has the property that h(π–»π–Ίπ—Œπ–Ύ):β‰‘π—…π—ˆπ—ˆπ—‰.

Now we just have to prove that μ⁒(x,π–»π–Ίπ—Œπ–Ύ)=μ⁒(π–»π–Ίπ—Œπ–Ύ,x)=x for every x:π•Š1. By definition, if x:π•Š1 we have μ⁒(π–»π–Ίπ—Œπ–Ύ,x)=ΞΌ~⁒(π–»π–Ίπ—Œπ–Ύ)⁒(x)=π—‚π–½π•Š1⁒(x)=x. For the equality μ⁒(x,π–»π–Ίπ—Œπ–Ύ)=x we do it by inductionMathworldPlanetmath on x:π•Š1:

  • β€’

    If x is π–»π–Ίπ—Œπ–Ύ then μ⁒(π–»π–Ίπ—Œπ–Ύ,π–»π–Ίπ—Œπ–Ύ)=π–»π–Ίπ—Œπ–Ύ by definition, so we have π—‹π–Ύπ–Ώπ—…π–»π–Ίπ—Œπ–Ύ:μ⁒(π–»π–Ίπ—Œπ–Ύ,π–»π–Ίπ—Œπ–Ύ)=π–»π–Ίπ—Œπ–Ύ.

  • β€’

    When x varies along π—…π—ˆπ—ˆπ—‰, we need to prove that

    π—‹π–Ύπ–Ώπ—…π–»π–Ίπ—Œπ–Ύβ’\centerdot⁒𝖺𝗉λ⁒x.x⁒(π—…π—ˆπ—ˆπ—‰)=𝖺𝗉λ⁒x.μ⁒(x,π–»π–Ίπ—Œπ–Ύ)⁒(π—…π—ˆπ—ˆπ—‰)⁒\centerdotβ’π—‹π–Ύπ–Ώπ—…π–»π–Ίπ—Œπ–Ύ.

    The left-hand side is equal to π—…π—ˆπ—ˆπ—‰, and for the right-hand side we have:

    𝖺𝗉λ⁒x.μ⁒(x,π–»π–Ίπ—Œπ–Ύ)⁒(π—…π—ˆπ—ˆπ—‰)⁒\centerdotβ’π—‹π–Ύπ–Ώπ—…π–»π–Ίπ—Œπ–Ύ =𝖺𝗉λ⁒x.(ΞΌ~⁒(x))⁒(π–»π–Ίπ—Œπ–Ύ)⁒(π—…π—ˆπ—ˆπ—‰)
    =𝗁𝖺𝗉𝗉𝗅𝗒⁒(𝖺𝗉λ⁒x.(ΞΌ~⁒(x))⁒(π—…π—ˆπ—ˆπ—‰),π–»π–Ίπ—Œπ–Ύ)
    =𝗁𝖺𝗉𝗉𝗅𝗒⁒(π–Ώπ—Žπ—‡π–Ύπ—‘π—β’(h),π–»π–Ίπ—Œπ–Ύ)
    =h⁒(π–»π–Ίπ—Œπ–Ύ)
    =π—…π—ˆπ—ˆπ—‰.∎

Now recall from \autorefsec:colimits that the join A*B of types A and B is the pushout of the diagram

A←𝗉𝗋1AΓ—B→𝗉𝗋2B.
Lemma 8.5.2.

The operation of join is associative: if A, B and C are three types then we have an equivalence (A*B)*C≃A*(B*C).

Proof.

We define a map f:(A*B)*Cβ†’A*(B*C) by induction. We first need to define fβˆ˜π—‚π—‡π—…:A*Bβ†’A*(B*C) which will be done by induction, then fβˆ˜π—‚π—‡π—‹:Cβ†’A*(B*C), and then 𝖺𝗉fβˆ˜π—€π—…π—Žπ–Ύ:∏(t:(A*B)Γ—C)f⁒(𝗂𝗇𝗅⁒(𝗉𝗋1⁒(t)))=f⁒(𝗂𝗇𝗋⁒(𝗉𝗋2⁒(t))) which will be done by induction on the first component of t:

(fβˆ˜π—‚π—‡π—…)(𝗂𝗇𝗅(a))) :≑𝗂𝗇𝗅(a),
(fβˆ˜π—‚π—‡π—…)(𝗂𝗇𝗋(b))) :≑𝗂𝗇𝗋(𝗂𝗇𝗅(b)),
𝖺𝗉fβˆ˜π—‚π—‡π—…β’(π—€π—…π—Žπ–Ύβ’(a,b)) :=π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗅⁒(b)),
f⁒(𝗂𝗇𝗋⁒(c)) :≑𝗂𝗇𝗋(𝗂𝗇𝗋(c)),
𝖺𝗉f⁒(π—€π—…π—Žπ–Ύβ’(𝗂𝗇𝗅⁒(a),c)) :=π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗋⁒(c)),
𝖺𝗉f⁒(π—€π—…π—Žπ–Ύβ’(𝗂𝗇𝗋⁒(b),c)) :=𝖺𝗉𝗂𝗇𝗋⁒(π—€π—…π—Žπ–Ύβ’(b,c)),
𝖺𝗉𝖽λ⁒x.𝖺𝗉f⁒(π—€π—…π—Žπ–Ύβ’(x,c))⁒(π—€π—…π—Žπ–Ύβ’(a,b)) :=`⁒`⁒𝖺𝗉𝖽λ⁒x.π—€π—…π—Žπ–Ύβ’(a,x)⁒(π—€π—…π—Žπ–Ύβ’(b,c))β€²β€².

For the last equation, note that the right-hand side is of type

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—Ξ»β’x.𝗂𝗇𝗅⁒(a)=𝗂𝗇𝗋⁒(x)⁒(π—€π—…π—Žπ–Ύβ’(b,c),π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗅⁒(b)))=π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗋⁒(c))

whereas it is supposed to be of type

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—Ξ»β’x.f⁒(𝗂𝗇𝗅⁒(x))=f⁒(𝗂𝗇𝗋⁒(c))⁒(π—€π—…π—Žπ–Ύβ’(a,b),𝖺𝗉f⁒(π—€π—…π—Žπ–Ύβ’(𝗂𝗇𝗅⁒(a),c)))=𝖺𝗉f⁒(π—€π—…π—Žπ–Ύβ’(𝗂𝗇𝗋⁒(b),c)).

But by the previous clauses in the definition, both of these types are equivalent to the following type:

π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗋⁒(c))=π—€π—…π—Žπ–Ύβ’(a,𝗂𝗇𝗅⁒(b))⁒\centerdot⁒𝖺𝗉𝗂𝗇𝗋⁒(π—€π—…π—Žπ–Ύβ’(b,c)),

and so we can coerce by an equivalence to obtain the necessary element. Similarly, we can define a map g:A*(B*C)β†’(A*B)*C, and checking that f and g are inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to each other is a long and tedious but essentially straightforward computation. ∎

A more conceptual proof sketch is as follows.

Proof.

Let us consider the following diagram where the maps are the obvious projections:

\xymatrix⁒A⁒&⁒AΓ—C⁒\ar⁒[l]⁒\ar⁒[r]⁒&⁒AΓ—C⁒AΓ—B⁒\ar⁒[u]⁒\ar⁒[d]⁒&⁒AΓ—BΓ—C⁒\ar⁒[l]⁒\ar⁒[u]⁒\ar⁒[r]⁒\ar⁒[d]⁒&⁒AΓ—C⁒\ar⁒[u]⁒\ar⁒[d]⁒B⁒&⁒BΓ—C⁒\ar⁒[l]⁒\ar⁒[r]⁒&⁒C

Taking the colimit of the columns gives the following diagram, whose colimit is (A*B)*C:

\xymatrix⁒A*B⁒&⁒(A*B)Γ—C⁒\ar⁒[l]⁒\ar⁒[r]⁒&⁒C

On the other hand, taking the colimit of the lines gives a diagram whose colimit is A*(B*C).

Hence using a Fubini-like theorem for colimits (that we havenÒ҂¬Ò„’t proved) we have an equivalence (A*B)*C≃A*(B*C). The proof of this Fubini theorem for colimits still requires the long and tedious computation, though. ∎

Lemma 8.5.3.

For any type A, there is an equivalence Σ⁒A≃2*A.

Proof.

It is easy to define the two maps back and forth and to prove that they are inverse to each other. The details are left as an exercise to the reader. ∎

We can now construct the Hopf fibration:

Theorem 8.5.4.

There is a fibration over S2 of fiber S1 and total space S3.

Proof.

We proved that π•Š1 has a structure of H-space (cf \autoreflem:hspace-S1) hence by \autoreflem:hopf-construction there is a fibration over π•Š2 of fiber π•Š1 and total space π•Š1*π•Š1. But by the two previous results and \autorefthm:suspbool we have:

π•Š1*π•Š1=(Σ⁒𝟐)*π•Š1=(𝟐*𝟐)*π•Š1=𝟐*(𝟐*π•Š1)=Σ⁒(Ξ£β’π•Š1)=π•Š3.∎
Title 8.5.3 The Hopf fibration
\metatable