comodule coalgebra
Let be a bialgebra. A right -comodule coalgebra is a coalgebra which is a right -comodule satisfying
(1) |
for all and .
There is a dual notion of a -module algebra.
Example 1
Let be a Hopf algebra. Then is itself a -comodule coalgebra for the adjoint coaction .
Title | comodule coalgebra |
---|---|
Canonical name | ComoduleCoalgebra |
Date of creation | 2013-03-22 13:26:39 |
Last modified on | 2013-03-22 13:26:39 |
Owner | mhale (572) |
Last modified by | mhale (572) |
Numerical id | 7 |
Author | mhale (572) |
Entry type | Definition |
Classification | msc 16W30 |
Related topic | ModuleAlgebra |
Related topic | ModuleCoalgebra |
Related topic | ComoduleAlgebra |