comodule coalgebra
Let be a bialgebra.
A right -comodule coalgebra is a coalgebra which is a right -comodule
satisfying
| (1) |
for all and .
There is a dual notion of a -module algebra.
Example 1
Let be a Hopf algebra![]()
.
Then is itself a -comodule coalgebra for the adjoint
coaction
.
| Title | comodule coalgebra |
|---|---|
| Canonical name | ComoduleCoalgebra |
| Date of creation | 2013-03-22 13:26:39 |
| Last modified on | 2013-03-22 13:26:39 |
| Owner | mhale (572) |
| Last modified by | mhale (572) |
| Numerical id | 7 |
| Author | mhale (572) |
| Entry type | Definition |
| Classification | msc 16W30 |
| Related topic | ModuleAlgebra |
| Related topic | ModuleCoalgebra |
| Related topic | ComoduleAlgebra |