module algebra
Let be a bialgebra. A left -module algebra is a unital algebra which is a left -module with action satisfying
(1) |
for all and .
There is a dual notion of a -comodule coalgebra.
Example 1
Let be a Hopf algebra. Then is itself a -module algebra for the adjoint action .
Title | module algebra |
---|---|
Canonical name | ModuleAlgebra |
Date of creation | 2013-03-22 13:26:31 |
Last modified on | 2013-03-22 13:26:31 |
Owner | mhale (572) |
Last modified by | mhale (572) |
Numerical id | 8 |
Author | mhale (572) |
Entry type | Definition |
Classification | msc 16W30 |
Related topic | ComoduleCoalgebra |
Related topic | ModuleCoalgebra |
Related topic | ComoduleAlgebra |