module algebra
Let be a bialgebra.
A left -module algebra is a unital algebra
which is a left -module with action
satisfying
| (1) |
for all and .
There is a dual notion of a -comodule coalgebra.
Example 1
Let be a Hopf algebra![]()
.
Then is itself a -module algebra for the adjoint action
.
| Title | module algebra |
|---|---|
| Canonical name | ModuleAlgebra |
| Date of creation | 2013-03-22 13:26:31 |
| Last modified on | 2013-03-22 13:26:31 |
| Owner | mhale (572) |
| Last modified by | mhale (572) |
| Numerical id | 8 |
| Author | mhale (572) |
| Entry type | Definition |
| Classification | msc 16W30 |
| Related topic | ComoduleCoalgebra |
| Related topic | ModuleCoalgebra |
| Related topic | ComoduleAlgebra |