divisor theory in finite extension
Theorem.β Let the integral domain![]()
, with the quotient field , have the divisor theoryβ , determined (see divisors and exponents) by the exponent (http://planetmath.org/ExponentValuation2) system of .β If is a finite extension
![]()
, then the exponent system , consisting of the continuations (http://planetmath.org/ContinuationOfExponent) of all exponents in to the field , determines the divisor theory of the integral closure
![]()
of in .
Corollary.β In the ring of integers of any algebraic number field![]()
, there is a divisor theory , determined by the set of all exponent valuations of .
References
- 1 S. Borewicz & I. Safarevic: Zahlentheorie.β BirkhΓ€user Verlag. Basel und Stuttgart (1966).
| Title | divisor theory in finite extension |
|---|---|
| Canonical name | DivisorTheoryInFiniteExtension |
| Date of creation | 2013-03-22 17:59:59 |
| Last modified on | 2013-03-22 17:59:59 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 7 |
| Author | pahio (2872) |
| Entry type | Theorem |
| Classification | msc 13A18 |
| Classification | msc 13F05 |
| Classification | msc 12J20 |
| Classification | msc 13A05 |
| Classification | msc 11A51 |
| Related topic | FiniteExtensionsOfDedekindDomainsAreDedekind |